一个恐怖组织在一座城市中安放了定时炸弹,其威力巨大,现在这里的警长想知道最坏的情况下会有多少街区受威胁。
在一个城市有 N \times M 个街区,每个街区由坐标描述,如图所示:
现在已知有一个恐怖组织在其中的一个街区安放了定时炸弹,其威力为 t ,即所有到这个街区的直线距离小于等于 t 的街区都会受威胁,已知有 k 个可能的炸弹安放位置,现在这里的警长想知道最坏的情况下会有多少街区受威胁。
第一行四个正整数 n,m,k,t 。
接下来 k 行每行两个正整数 x_i,y_i ,描述每个可能安放炸弹的街区。
一个正整数为在最坏情况下有多少街区会受威胁。
4 5 3 2 1 2 3 4 4 5
11
数据规模与约定
对于 20\% 的数据 k=1 。
对于 50\% 的数据 1 \le n,m \le 1000 , 1 \le k \le 20 , 1\le t \le 100 。
对于 100\% 的数据 1 \le n,m \le 10^5 , 1 \le k \le 50 , t \le 300 。
提示: 点P1 (x1,y1), 点P2 (x2,y2)
两点间的距离公式:sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))
sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))